IMPORTANT TECHNIQUES TO SOLVE FUNCTIONAL EQUATIONS

Bahodirova Rayhona

pupil of high school number 4.

ABSTRACT

Functional equations appear frequently in Mathematical Olympiads. In this article we focus on some types of functional equations and how to solve them.

Key words: Functional, equation, inequality, real number, positive, symmetric.

АННОТАЦИЯ

Функциональные уравнения часто появляются на математических олимпиадах. В этой статье мы сосредоточимся на некоторых типах функциональных уравнений и способах их решения

Ключевые слова: функциональный, уравнение, неравенство, настоящий номер, положительный, симметричный.

I.Switching

The main idea is to exchange the variables if one side of equation is symmetric with regard to the variables.

Problem 1.

Find	all	functions	$f: R \to R$	such	that,
f(f(x) + f	f(y) = f(x)	$^{2})+2x^{2}f(y)+j$	$f^2(y)$ holds for all :	$x, y \in R (1)$	

Solution: Let p(x, y) denote the assertion (1). Left hand side is symmetric, by switching x, y we can see that

$$p(x, y): f(f(y) + f(x)) = f(y^2) + 2y^2 f(x) + f^2(x)$$
(2)

47

From (1) and (2) we get that:

$$f(x^2) + 2x^2 f(y) + f^2(y) = f(y^2) + 2y^2 f(x) + f^2(x)$$

By taking $y = 0$ and $y = 1$ we obtain that:

$$\begin{cases} f(x^2) + 2x^2 f(0) + f^2(0) = f(0) + f^2(x) \\ f(x^2) + 2x^2 f(1) + f^2(1) = f(1) + 2f(x) + f^2(x) \end{cases}$$
(3)

From (3), we can easily get the answers $f(x) = 0, \forall x \in R$ or $f(x) = x^2, \forall x \in R$

Problem 2.

Find all functions $f: R \rightarrow R$ such that,

$$f(x) + y + f(f(x) + y) = 2f(x + y)$$
(4)

Solution: f(f(x) + y) = 2f(x + y) - f(x) - y

$$p(x, f(y)): f(f(x) + f(y)) = 2f(x + f(y)) - f(x) - f(y) =$$

= 2(2f(x + y) - x - f(y)) - f(x) - f(y)
$$\Rightarrow f(f(x) + f(y)) = 4f(x + y) - 3f(y) - f(x) - 2x$$
(5)

By switching variables:

$$f(f(y) + f(x)) = 4f(y + x) - 3f(x) - f(y) - 2y$$
(6)

From (5) and (6) we can obtain :

$$f(x) - x = f(y) - y$$

By taking $y = 0 \Rightarrow f(x) = x + C$ by putting this solution to (4) we find C = 0, then f(x) = x.

II. Flipped inequalities.

A general idea is to use two inequalities for finding the value of f at a certain point. To this we will show $f(a) \ge c$ and $f(a) \le c$, to obtain f(a) = c

In the following problem we will find f(1) by this method.

Problem 3. Find all functions $f : \mathbb{R}^+ \to \mathbb{R}^+$ such that for all positive real numbers x, y such that x > y we have:

$$f(x-y) = f(x) - f(y) \cdot f(\frac{1}{x})y$$

Solution: We start the proof with the following claim.

Claim1: $\forall x \in R \text{ we have } f(x) \leq x$.

Proof: Since f(x - y) > 0, we get that $f(x) - f(x)f(\frac{1}{x})y > 0$

$$f(x)(1-yf(\frac{1}{x})>0 \to f(\frac{1}{x}) < \frac{1}{y} \text{ for } x > y .$$

By choosing y close enough to x we obtain that $f(\frac{1}{x}) \le \frac{1}{x} \Longrightarrow f(x) \le x$

Claim 2. f(1) = 1

Proof. We know $f(1) \le 1$, so we must prove $f(1) \ge 1$.

Let y < 1. By plugging x = 1 we take

$$1 - y \ge f(1 - y) = f(1) - f^{2}(1)y$$
$$1 - y \ge f(1) - f^{2}(1)y$$
$$(f(1) - 1)(y(1 + f(1)) - 1) \ge 0$$

We take $\forall y \text{ which } 1 > y > \frac{1}{1 + f(1)}$ and we get $f(1) \ge 1 \Longrightarrow f(1) = 1$

take

Claim 3. $\forall z < 1$ f(z) = z we take x = 1, y = 1 - z z < 1

$$f(z) = 1 - (1 - z) = z$$

Now

y < x < 1

$$x - y = f(x - y) = f(x) - f(x)f(\frac{1}{x})y = x - xyf(\frac{1}{x})$$

we

$$\Rightarrow f(\frac{1}{x}) = \frac{1}{x} \text{ for } x > 1 \text{ . Therefore } f(x) = x \text{ for } \forall x \in R$$

Overall that kind of problems are common in mathematical olympiads. We recommend to solve some functional equations by using this techniques.

REFERENCES:

– T. Andreescu, I. Boreico, O. Mushkarov, N.Nikolov, Topics in Functional Equations XYZ Press, UC, USA, 2012.

- artofproblem solving.com.

- M. H. Rezaci, solving functional equiations in R^+ using inequalities and sequences.
- Pang-Ching, wu Funtional Equation-Part I.

