КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ Со (II) И Zn (II) АЦЕТАМИДА

Мукумова Гулвар Жумаевна

Кан.хим.наук, доцент, Термезский государственный университет

Тураев Хайит Худайназарович

Доктор химических наук, профессор, Термезский государственный университет

E-mail: sh_kasimov@rambler.ru

Аннотация: в статье изучено синтеза координационных соединений сукцинатов Fe(II), Co(II) и Zn (II) с AA и исследованы их ИК спектры и СДО.

Ключевые слова: координационные соединение, ацетамид, сукцинаты металлов, ИК-спектроскопия.

COORDINATION CONNCTIONS Co(II) AND Zn(II) ACETAMIDE

Abstract: Synthesis of coordination compounds of succinates Co (II) and Zn (II) with AA was studied in the article and their IR spectra and SDS were studied.

Key words: coordination compounds, acetamide, metal succinates, IR spectroscopy.

ИК-спектры полощения записывали на спектрометре Specord-75 (400-4000 см-¹) с использованием методики прессования в виде таблеток с КВr.

Основные колебательные частоты в ИК спектрах поглощения комплексов приведены в таблица 1 .

свободного Сравнение ИК-спектров ацетамида исследуемых комплексных соединений показывает, что частоты валентных колебаний связей NH смещаются в высокочастотную область, в то время, как частота преимущественного валентного колебания связи С=О понижается при координировании на 5-10 см⁻¹. Такое смещение v(C=O) обусловлено образованием связи М←O, что свою очередь приводит к упрочнению связи CN и соответственно к повышению v(CN). Действительно, полоса v(CN), лежащая в спектре в свободном ацетамиде при 1385 см⁻¹, смещается на 5-7 см⁻¹ в высокочастотную область спектрах комплексов. Следует отметить, что в случае комплекса сукцинита меди характеристические частоты связей С=О и С-N расщеплены и соответственно проявляется при 1652, 1658 и 1380, 1390 см⁻¹, что указывает на неэквивалентное связывание молекул ацетамида.

Из-за сложности спектра трудно выделить валентные колебания связей СОО для установления дентатности карбоксилатной группы. Однако, учитывая координационную емкость металлов и используя электронные спектры диффузного отражения, можно установить геометрическую конфигурацию центральных ионов. **Таблица 1**

Основные колебательные частоты (см⁻¹) в ИК спектрах ацетамида (AA) и его комплексов с сукцинатами кобальта и цинка

CH ₃ . CONH ₂	$ \begin{array}{c} [\text{Co(OOC)}_2(\text{CH}_2)_2 \cdot 2\text{AA} \cdot \\ \text{H}_2\text{O}] \end{array} $	[Zn(OOC) ₂ (CH ₂) ₂ 2AA·H ₂ O]	Отнесение
	3510	3520	$v_{as}(NH_2) + v_{as}(OH)$
3360	3400	3430	$v_s(NH_2) + v_s(OH)$
3180	3260	3250	
1160	1650	1655	v(C=O)
1620	1620	1622	$\delta(\text{HOH})+ \nu(\text{CO})+ \\ \delta(\text{NH}_2)$
	1540	1530	$v_{as}(COO)$
	1420	1435	$v_s(COO) + \delta(CH_3)$
1385	1395	1392	v(CN)

1350	1330	1320	$\delta_s(CH_3)$
1135	1150	1152	g(NH ₂)
1032	1045	1055	g(CH ₃)
990	1022	1018	
	950	935	
865	860	855	v(C-C)
	685	655	δ(COO)
570	575, 530	572, 550	δ(NCO)
460	465	475	δ(CC)

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ: (REFERENCES)

- 1. Мукимова Г.Ж. Синтез и исследование координационных соединений сукцинатов некоторых 3d- металлов с амидами. Автореф. дис... канд. хим. Наук.Ташкент. 1999. с.35-38
- 2. Харитонов Ю.А., Цивадзе А.Ю., Смирнов А.Н. Анализ нормальных колебаний координированного ацетамида. //Коорд. химия. 1975. Т.1. N 2.C. 214-219
- 3. Цивадзе А.Ю., Харитонов Ю.А., Цинцадзе Г.В., Смирнов А.Н., Тевзадзе М.Н.Колебательные спектры координационных соединений кадмия с ацетамидом .// Журн. неорг.химии. 1974 . Т.19. N 10. C. 2621-2627.
- 4. Цивадзе А.Ю., Харитонов Ю.А., Цинцадзе Г.В., Смирнов А.Н., Тевзадзе М.Н.Изучение комплексов некоторых переходных металлов с ацетамидом методами колебательной спектроскопии. // Журн. неорг.химии. 1974 . Т.19. N 12. C. 3321-3326.