BIRMAN-SCHWINGER PRINCIPLE FOR TWO-PARTICLE DISCRETE SCHRÖDINGER OPERATORS ON LATTICES

Abdusaitov Doston Shirinboy oʻgʻli

Master of the Samarkand State University

ABSTRACT

We consider a system of two identical bosons moving on the

hypercubic lattice, Z^d , $d \ge 1$ and interacting through attractive short range

- potentials $\mu V (\mu > 0)$ and the two-particle Schrödinger operators $H_{\mu}(k) = H_0(k)$ -
- μV , k ϵT^d associated to the system, where T^d is the d dimensional torus. We study the Birman-Schwinger principle for two-particle Schrödinger operators.

Keywords: discrete Schrödinger operators, quantum mechanical two-particle, *Birman-Schwinger principle*, system, hamiltonians.

1.Introduction

We consider a system of two bosons moving on the d-dimensional hypercubic lattice Z^d interacting via short-range pair potentials. The main goal of this paper is to prove Birman-Schwinger principle for two-particle Schrödinger operators $H_{\mu}(k)$, k \in T associated to the system of two identical bosons, which is not occur in the continuous case. The spectral properties for the two-particle lattice hamiltonians on the d - dimensional lattice Z^d , d ≥ 1 .

2. Birman-Schwinger principle for two-particle Schrödinger operator $H_{\mu}(k)$, $k \in T$. For a bounded self-adjoint operator A in a Hilbert space H, we define $n_{+}(\mu, A)$ resp. $n_{-}(\mu, A)$ as

 $n_+(\gamma, A) = \max\{\dim L: L \subset H; (Af, f) > \gamma, f \in L, ||f||=1\}$ resp.

 $n_{-}(\gamma, A) = \max{\dim L: L \subset H; (Af, f) \leq \gamma, f \in L, ||f||=1}$

The value $n_+(\gamma, A)$ (resp. $n_-(\gamma, A)$) is equal to the infinity, if γ is in the essential spectrum and if $n_+(\gamma, A)$ (resp. $n_-(\gamma, A)$) is finite, it is equal to the number of the eigenvalues of A greater (resp. smaller) than γ (see Glazman lemma [14]).

Let $d \ge 1$ and $\varepsilon_k(\cdot)$, $k \in T$ be the two-particle dispersion relation and $v \in l_0(Z^d; R_0^+)$ where $v \in l_0(Z^d; R_0^+)$ is space of non-negative functions defined on Z^d and vanishing at infinity.

For any $z < \varepsilon_{min}(k)$ we define a non-negative compact Birman-Schwinger operator acting in $l^2(Z^d)$ as

$$B_{\mu}(k,z) \coloneqq V^{1/2} R_0(k,z) V^{1/2}$$

Where $R_0(k, z) \ z \in C/[\varepsilon_{min}(k), \varepsilon_{max}(k)]$, is the resolvent of the operator $H_0(k)$ and $V^{1/2}$ is the non-negative square root of the non-negative operator V :

 $(V^{1/2}\psi)(\mathbf{x}) = v^{1/2}(x)\psi(\mathbf{x}), \psi \in l^2(\mathbb{Z}^d)$. The kernel function $B_{\mu}(k, z, \cdot, \cdot) \mathbf{k} \in \mathbb{Z}^d \mathbf{z} < \varepsilon_{min}(k)$ of the Birman-Schwinger operator $B_{\mu}(k, z)$ is of the form

$$B_{\mu}(k,z,x,y) \coloneqq v^{1/2}(x)R_0(k,z,x-y)v^{1/2}(y) \ x,y \in \mathbb{Z}^d$$
$$R_0(k,z,x) = \int_{\mathbb{T}^d} \frac{\varepsilon^{i(p,x)}}{\varepsilon_k(p)-z} d\eta(p), \ x \in \mathbb{Z}^d.$$

In the following Lemma we formulate some important properties of the kernel function of the Birman-Schwinger operator.

Lemma 1.1 Let $d \ge 3$. For any $k \in T^d$ and $x, y \in Z^d$ the function $B(k, \cdot; x, y)$ is realanalytic in $z \in C \setminus [(\varepsilon_{min}(k), \varepsilon_{max}(k)]]$.

Proof. For any $k \in G$ and $x \in Z^d$ the regularity of the function

$$R_0(k,z,x) = \int_{T^d} \frac{\varepsilon^{\iota(p,x)}}{\varepsilon_k(p)-z} d\eta(p), \ x \in \mathbb{Z}^d$$

In $z \in C/[\varepsilon_{min}(k), \varepsilon_{max}(k)]$ implies the regularity of the kernel B(k, \cdot ; x, y) in $z \in C/[\varepsilon_{min}(k), \varepsilon_{max}(k)]$.

Lemma 1.2 (Birman-Schwinger principle). For any $< \varepsilon_{min}(k)$, $k \in T^d$ the following assertions (i)--(iv) hold true.

1. If $\varphi \epsilon l^2(Z^d)$ solves $H_{\mu}(\mathbf{k})\varphi = z\varphi$, then $\psi := V^{1/2}\varphi \epsilon l^2(Z^d)$ solves $\psi = \mathbf{B}(\mathbf{k}, z)\psi$. 2. If $\psi \epsilon l^2(Z^d)$ solves $\psi = \mathbf{B}(\mathbf{k}, z)\psi$, then $\varphi := R_0(k, z)V^{1/2}\psi \epsilon l^2(Z^d)$ solves $H_{\mu}(\mathbf{k})\varphi = z\varphi$.

3. z is an eigenvalue of $H_{\mu}(k)$ of multiplicity m if and only if 1 is an eigenvalue of B(k,z) of multiplicity m.

4. Counting multiplicities, the number $N_{-}(z, H_{\mu}(k)) - \mu$ of eigenvalues of $H_{\mu}(k)$ less than z equals the number $N_{+}(1,B(k,z))$ of eigenvalues of B(k,z) greater than 1, i.e., the equality

$$N_{-}(z, H_{\mu}(k)) = N_{+}(1, B(k, z))$$

holds.

Proof. Theorem 2.2 is the standard Birman-Schwinger principle for $z < \varepsilon_{min}(k)$ () max z ε k and the proof for the lattice Schrödinger operator case can be found in [4].

REFERENCES:

1. S.Albeverio, S. N. Lakaev, K. A. Makarov, Z. I. Muminov: The Threshold Effects for the Two-particle Hamiltonians on Lattices, Comm.Math.Phys. 262(2006), 91--115 2. Albeverio S., Lakaev S. N., and Muminov Z. I.: Schrödinger operators on lattices. The Efimov effect and discrete spectrum asymptotics, Ann. Henri Poincaré. 5, 743--772 (2004).

3. Albeverio, S.N. Lakaev and A.M. Khalkhujaev: Number of Eigenvalues of the ThreeParticle Schrodinger Operators on Lattices, 18 (2012), 18pp. 387-4204. V. Bach, W. de Siqueira Pedra, S. Lakaev:Bounds on the Discrete Spectrum of Lattice Schrödinger Operators Preprint mp-arc 10-143.