РАСЧЕТ ДОПОЛНИТЕЛЬНЫХ ПОТЕРЬ МОЩНОСТИ, ОБРАЗУЮЩИХСЯ В ТРАНСФОРМАТОРАХ ПОД ДЕЙСТВИЕМ ГАРМОНИК БОЛЕЕ ВЫСОКОГО ПОРЯДКА

Комолдинов Сахибжон Солижон ўғли

Ферганский Политехнический институт Старший преподаватель кафедры "электроэнергетика" E-mail: s.kamoliddinov@ferpi.uz

АННОТАЦИЯ

В статье изложены формулы расчета дополнительных потерь мощности, возникающих в трансформаторах и конденсаторах под действием гармоник высокого порядка. Кроме того, были подсчитаны дополнительные потери мощности, возникающие при воздействии 5 -, 7 - и 11 - гармоник на трансформаторе №765 ТП фидера Базарбоши, расположенного в Куштепинском районе. Замеры производились в локоне "Malika 01".

Ключевые слова: Потери, гармоника, трансформатор, синусоидальный ток, коэффициент синусоидальности.

ABSTRACT

The article presents formulas for calculating additional power losses arising in transformers and capacitors under the action of high-order harmonics. In addition, additional power losses were calculated that occur when exposed to 5-, 7 - and 11-harmonics on transformer No. 76 TP of the Bazarboshi feeder located in the Kushtepa district. Measurements were made in the lock "Malika 01".

Keywords: Losses, harmonics, transformer, sinusoidal current, sinusoidal coefficient.

ВВЕДЕНИЕ

В результате ускорения производственных процессов, совершенствования и новых технологий чаще применяются все вентильные преобразователи, однофазные и трехфазные электросварочные аппараты, электрические дуговые печи большой мощности, нелинейные нагрузки вольтхарактеристики. Такими свойствами обладают трансформаторы, магнитные усилители и газоразрядные лампы. Характерной особенностью этого оборудования является то, что при подаче на их зажимы синусоидального напряжения возникает расход несинусоидальных токов в сети.

МЕТОДЫ

Кривые несинусоидального тока можно рассматривать как сложные гармонические колебания, состоящие из комплекса простых гармонических колебаний разной частоты. Высокие токи гармоник, проходящие через элементы

сети, вызывают падение напряжения на сопротивлениях этих элементов, что в сочетании с основным синусоидальным напряжением приводит к искажению формы кривой напряжения, ухудшению качества электроэнергии в питающей сети то есть возникает проблема электромагнитной совместимости с питанием электрических приемников [5].

Несинусоидальность напряжения характеризуется следующими показателями:

Коэффициент искажения кривой синусоиды напряжения K_u ;

Коэффициент n-го гармонического составляющего напряжения $K_{u(n)}$.

Коэффициент искажения кривой синусоиды напряжения определяется отношением основного значения несинусоидального напряжения гармонического состава к напряжению основной частоты:

$$K_u = \frac{\sqrt{\sum_{n=2}^{\infty} U_n^2}}{U_1} \cdot 100\% \approx \frac{\sqrt{\sum_{n=2}^{\infty} U_n^2}}{U_{nom}} \cdot 100\%, \tag{1}$$

где U_{nom} —значение напряжения n - й гармоники; n-число последних рассмотренных гармоник.

При расчете K_u допускается не учитывать гармоники со значением менее 0.1% [1].

Активные потери мощности при высоких токах гармоник в трансформаторах рассчитываются по формуле (2) [4]:

$$\Delta P_{\Sigma n} = 3 \sum_{n=2} I_n^2 R_k K_{nm}, \qquad (2)$$

где I_n —ток n - й гармоники, проходящей через трансформатор; R_k — сопротивление короткого замыкания трансформатора на номинальной частоте; K_{nm} — коэффициент, учитывающий увеличение сопротивления короткого замыкания для высоких гармоник из-за эффектов, возникающих на поверхности и вблизи нее. Для силовых трансформаторов $K_{5m}=2,1$; $K_{7m}=2,5$; $K_{11m}=3,2$; $K_{13m}=3,7$ [4].

Потери мощности в конденсаторах. От несинусоидального напряжения на диэлектриках конденсаторов возникают дополнительные активные потери:

$$\Delta P_{\Sigma} = \omega C t g \delta \sum_{n=1}^{13} n U_n^2 , \qquad (3)$$

где $tg\delta$ - коэффициент диэлектрических потерь, одинаковый для всех гармоник с n=13; U_n —напряжение n-й гармоники на шинах после подключения конденсаторной батареи емкостью с [1].

Мы проводим расчеты с результатами измерений питателя Bazorboshi, проведенных в ТП №765 для размещения в Коштепинском районе Ферганской области. Номинальная мощность встроенного трансформатора S=63 кВА. В таблице 1 приведены гармоники токов, полученных за 1 сутки в каждой фазе трансформатора ТП № 76.

Таблица 1 **№ 76 гармоника высоких токов ТП**

Гармоника	5 7			7	7			11		
Время	A	В	C	A	В	C	A	В	C	
28.04.2022 14:30	3,015	3,077	3,934	0,329	1,024	0,958	0,133	0,314	0,612	
28.04.2022 15:00	2,336	3,618	3,095	0,206	1,559	0,878	0,177	0,589	0,361	
28.04.2022 16:00	3,133	4,766	4,258	0,356	1,777	1,397	0,247	0,694	0,375	
28.04.2022 17:00	3,230	3,777	3,385	0,416	1,779	0,682	0,061	0,582	0,267	
28.04.2022 18:00	2,440	3,234	3,136	0,723	1,172	0,465	0,300	0,146	0,402	
28.04.2022 19:00	3,004	2,971	2,992	0,999	2,574	0,244	0,764	0,999	0,602	
28.04.2022 20:00	9,446	38,383	7,784	7,862	24,396	6,053	2,334	1,632	1,010	
28.04.2022 21:00	9,107	8,275	7,694	4,359	4,223	3,555	1,338	0,937	0,254	
28.04.2022 22:00	18,896	33,309	6,825	14,953	20,061	3,952	2,263	5,053	0,786	
28.04.2022 23:00	19,807	20,535	18,401	14,015	12,488	10,129	3,228	3,782	1,674	
29.04.2022 0:00	22,394	24,648	2,896	21,265	19,781	3,092	5,550	4,789	0,226	
29.04.2022 1:00	37,651	17,391	3,311	10,901	6,684	1,181	14,373	5,928	0,550	
29.04.2022 2:00	17,691	3,743	11,981	16,128	3,405	10,857	6,600	1,260	3,344	
29.04.2022 3:00	24,288	7,432	6,956	22,569	5,861	8,296	11,560	1,020	3,577	
29.04.2022 4:00	76,596	18,391	150,396	93,421	18,281	191,971	21,288	3,421	35,958	
29.04.2022 5:00	63,442	16,686	25,880	51,586	10,793	19,404	7,372	2,750	3,073	
29.04.2022 6:00	6,293	5,298	6,417	9,009	10,436	5,782	6,760	6,402	2,951	
29.04.2022 7:00	3,843	2,627	2,076	1,232	2,131	0,243	0,409	0,458	0,225	
29.04.2022 8:00	4,879	4,906	3,909	0,218	3,535	1,498	0,861	1,242	0,668	
29.04.2022 9:00	2,567	2,232	2,820	0,666	0,969	0,705	0,607	0,391	0,283	
29.04.2022 10:00	2,180	3,146	2,861	0,486	0,581	0,721	0,424	0,146	0,536	
29.04.2022 11:00	2,200	3,096	2,404	0,579	0,786	0,581	0,298	0,264	0,279	
29.04.2022 12:00	2,829	4,639	4,586	0,589	1,754	0,756	0,628	0,757	0,462	
29.04.2022 13:00	3,076	3,293	4,866	0,536	0,756	0,964	0,142	0,166	0,328	

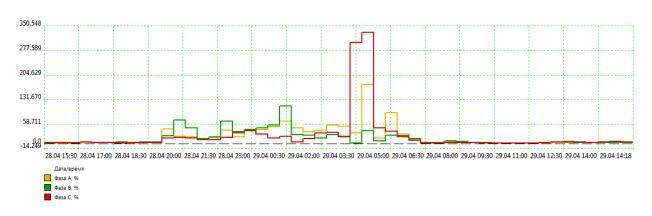


Рисунок 1. №76 график гармоник токов ТП

Результаты. С помощью выражения (2) вычисляем дополнительные потери, образующиеся на всех фазах трансформатора (Таблица 2):

Таблица 2

Дополнительные потери мощности, вызванные гармониками токов более высокого порядка

Расчетные потери мощности по фазам (Вт)							
Время	5	7	11	Время	5	7	11
28.04.2022 15:00	0,050	0,005	0,001	29.04.2022 3:00	0,908	0,974	0,241
28.04.2022 16:00	0,090	0,009	0,002	29.04.2022 4:00	36,529	66,602	3,402
28.04.2022 17:00	0,066	0,006	0,001	29.04.2022 5:00	6,818	4,831	0,161
28.04.2022 18:00	0,047	0,004	0,001	29.04.2022 6:00	0,197	0,460	0,240
28.04.2022 19:00	0,049	0,011	0,005	29.04.2022 7:00	0,044	0,009	0,001
28.04.2022 20:00	1,876	1,060	0,023	29.04.2022 8:00	0,114	0,020	0,007
28.04.2022 21:00	0,381	0,106	0,006	29.04.2022 9:00	0,035	0,004	0,002
28.04.2022 22:00	2,114	1,097	0,061	29.04.2022 10:00	0,041	0,002	0,001
28.04.2022 23:00	2,093	0,969	0,070	29.04.2022 11:00	0,036	0,003	0,001
29.04.2022 0:00	1,513	1,407	0,103	29.04.2022 12:00	0,088	0,007	0,003
29.04.2022 1:00	2,066	0,254	0,402	29.04.2022 13:00	0,077	0,004	0,000
29.04.2022 2:00	0,677	0,667	0,116	29.04.2022 14:00	0,076	0,005	0,001

Общее значение расчетных потерь мощности для каждой гармоники приведено в таблице 3:

Таблица 3

Общая суточная потеря мощности

Высокие гармоники	5	7	11
ΔP , Vt	956,6	912	208,9

Полученные дополнительные потери мощности составили 0,83% на гармонике 5, 0,79% на гармонике 7 и 0,18% на гармонике 11. Для устранения гармоник высокого порядка рекомендуется использовать фильтры.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ: (REFERENCES)

- 1. I.X.Xoliddinov. Elektr energiyasini sifat ko 'rsatkichlarini nazorat qilish. O'quv qo'llanma. Classic 2022. Farg'ona.
- 2. Жежеленко И.В. Высшие гармоники в системах электроснабжения пром предприятий. 2-е изд., перераб.и доп. –М.: Энергоатомиздат, 1984.
- **3.** Аллаев К.Р., Холиддинов И.Х. Анализ показателей качества электрической энергии в распределительных сетях 6-10/0,4 кВ. // Узбекский журнал проблемы информатики иэнергетики, 2015. №6. С.61-65.
- **4.** Komoliddinov Sokhibjon Solijon oʻgli, "ANALYSIS OF ADDITIONAL POWER LOSSES GENERATED BY HIGH-ORDER HARMONICS IN ELECTRIC MOTORS", Best.Jour.Inno.Sci.Res.Dev., vol. 2, no. 11, pp. 622–628, Nov. 2023.
- **5.** Khosiljonovich K. I., Solidjon oʻgʻli K. S. APPLICATION OF THE METHOD OF INDETERMINATE LAGRANGE MULTIPLIERS FOR OPTIMAL POWER DISTRIBUTION OF COMPENSATING DEVICES BETWEEN CONSUMERS. 2023.