## ТЕХНОЛОГИЯ ПРОИЗВОДСТВА ИНГИБИТОРА ОТЛОЖЕНИЯ МИНЕРАЛЬНЫХ СОЛЕЙ НА ОСНОВЕ МОЧЕВИНЫ.

#### Суяркулов Ойбек Санакул угли

ДжизПи Магистрант кафедры химической технологии

#### Нимаджонова Гулжахон Махмуджоновна

ДжизПи Магистрант кафедры химической технологии

#### Тангяриков Нормурод Сайитович

ДжизПи кафедры химической технологии д.т.н., профессор E-mail: normurod63@mail.ru

#### **АННОТАЦИЯ**

Разработкам технологий производства ингибиторов коррозии и солеотложения, а также ионитов были посвящены исследования как зарубежных, так и отечественных ученых. Поскольку химические реагенты необходимые для добычи и переработки нефти и газа в настоящее время приобретаются зарубежом, то необходимость научных исследований разработки ингибиторов коррозии, солеотложения, ионитов и др. с заранее заданными свойствами на местном сырье очевидна. Тем более что данная проблема, как в нашей стране, так и зарубежом изучена недостаточна.

**Ключевые слова:** формальдегид, дисульфонат, метиленсульфонаты, ингибитор, ионов, сорбция ионов, мочевиной, минеральных, солей.

Технологический процесс производства ингибитора отложения минеральных солей разработан Ташкентским химико-технологическим институтом (ТХТИ) совместно с инженерно-техническими разработками «Композит». Для отработки процесса в ТХТИ была смонтирована опытная установка.

Установка состоит из одной технологической линии.

Процесс периодический.

Мощность установки – заданная.

Разработанный метод получения ингибитора отложения минеральных солей заключается в конденсации мочевины с формальдегидом в присутствии бисульфита натрия при температурах  $60 - 80^{0}$ C.

В процессе получения ингибитора отложения минеральных солей газообразные, жидкие и твердые отходы не образуется.

#### Характеристика готовых продуктов

Ингибитор отложения минеральных солей представляет собой вязкая жидкость со слабым запахом.

По физико-химическим и эксплуатационным показателям ингибитор отложения минеральных солей должен соответствовать требованиям и нормам, указанным в таблице 1.

таблице 1 По физико-химическим и эксплуатационным показателям ингибитор

| No | Наименование показателей                 | Норма              |
|----|------------------------------------------|--------------------|
| 1. | Внешний вид                              | вязкая жидкость со |
|    |                                          | слабым запахом     |
| 2. | Массовая доля формальдегида, не более, % | 0,1                |
| 3. | Вязкость по ВЗ-4, сек                    | 50÷60              |
| 4. | рН водного раствора                      | 8,0÷9,0            |
| 5. | Защитный эффект по карбонату и сульфату  | 90,0               |
|    | кальция, не менее, %                     |                    |
| 6. | Массовая доля сухого остатка             | 45 – 50 %.         |

## Характеристика исходного сырья, материалов и полупродуктов

Мочевина – гранулы белого цвета, амид угольной кислоты

| Эмпирическая формула                        | CH <sub>4</sub> N <sub>2</sub> O                 |
|---------------------------------------------|--------------------------------------------------|
| Структурная формула                         | O<br>  <br>NH <sub>2</sub> - C - NH <sub>2</sub> |
| Молекулярная масса, у.е.                    | 60,06                                            |
| Плотность при $20^{0}$ С, г/см <sup>3</sup> | 1,335                                            |
| Температура плавления, <sup>0</sup> С       | 132,7                                            |
| Температура кипения, <sup>0</sup> С         | разл.                                            |
| Растворимость в воде                        | 108                                              |
| Растворим в спирте, метаноле.               |                                                  |

Формальдегид — технический, водный раствор формальдегида содержит 37.0 - 37.3 % формальдегида, 6.0 - 15.0 % метилового спирта, 0.02 - 0.04 % муравьиной кислоты. Водный раствор формальдегида — формалин представляет собой бесцветную жидкость с острым запахом. При хранении полимеризируется.

| Эмпирическая формула                  | CH <sub>2</sub> O                 |
|---------------------------------------|-----------------------------------|
| Структурная формула                   | <sub>4</sub> 0                    |
|                                       | H-C H                             |
|                                       | 11                                |
| Молекулярная масса, у.е.              | 30,03                             |
| Температура плавления, <sup>0</sup> С | -118                              |
| Температура кипения, <sup>0</sup> С   | -19                               |
| Плотность, г/см <sup>3</sup>          | 1,0768-1,1103 (18 <sup>o</sup> C) |
| Показатель преломления $n^{18}_{D}$   | 1,3766-1,3776                     |
| рН формалина                          | 2,4-4,0                           |

3. Пиросульфит натрия —  $Na_2S_2O_5*2H_2O$  представляет собой белый порошок, с характерным запахом.

| Эмпирическая формула                  | $Na_2S_2O_5$                            |
|---------------------------------------|-----------------------------------------|
| Структурная формула                   | NaO - S = O $O$ $O$ $NaO - S = O$       |
| Молекулярная масса, у.е.              | 236                                     |
| Температура плавления, <sup>0</sup> С | Разлагается 150°C                       |
| Растворимость в воде                  | $0^{0}$ C $-45,5$<br>$80^{0}$ C $-88,7$ |

При растворении в воде образует две молекулы бисульфита натрия.

## Химизм процесса

При взаимодействии мочевины(тиомочевины) с формальдегидом в присутствии бисульфита натрия происходит конденсация последних с образованием сульфонат метиленовых производных мочевины (тиомочевины) по схеме:

$$\begin{array}{c} X \\ \parallel \\ H_2N - C - NH_2 + 2CH_2O + 2NaHSO_3 \longrightarrow \\ \\ X \\ \parallel \\ NaSO_3CH_2 - HN - C - NH - CH_2SO_3Na + 2H_2O \\ I,II \end{array}$$

где: X=0(I); X=S(II);

Наряду с дисульфонат производными мочевины может быт образованы трии четвертье сульфонат производные метиленмочевины по схеме:

$$\begin{array}{c} X \\ \parallel \\ \text{NaSO}_3\text{CH}_2 - \text{H N-C-NH - CH}_2\text{SO}_3\text{Na} & + 2\text{CH}_2\text{O} + 2\text{NaHSO}_3 \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

где: X = O(III); S(IV)

Из-за пространственные затруднения трех- и четырех замещенных метиленсульфонаты мочевины трудно образуется. В основном образуется дизамещенные метиленсульфонаты мочевины, которые очень хорошо растворяются в воде.

# Описание технологического процесса производства ингибитора отложения минеральных солей (ИОМС – МСМ)

Технологическая схема производства ИОМС–МСМ (метиленсульфонат мочевины) состоит из одной технологической линии.

Принципиальная технологическая схема приведена на рис 1.

Е1, Е3 Е4, Е6, Е7 — емкости для раствора мочевины, формальдегида и бисульфита натрия; Н2, Н8 — центробежные насосы; Р5 — реактор; Е9 — емкость для готового продукта.

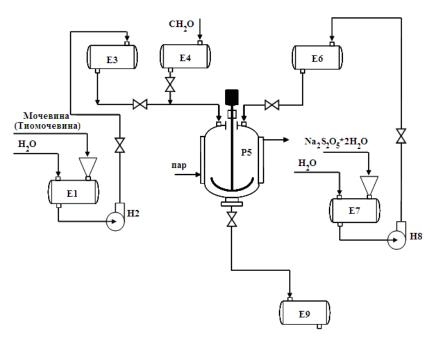



Рис 1. Принципиальная технологическая схема производства ингибитора отложения минеральных солей ИОМС – МСМ.

В реактор поз Р5, снабженный механической мешалькой, поступает из емкости поз Е3, Е4 и Е6 рассчитанное количество формалина, водный раствор мочевины и бисульфита натрия. Реактор Р5 представляет собой вертикальный цилиндрический аппарат, объемом 1,9 м<sup>3</sup>. материал – нержавеющий сталь.

## СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ: (REFERENCES)

- 1. Рахматуллаева Г.Д. Синтез и разработка технологии новых комплексонов и их применение: Диссертация на соискание канд.техн.наук. –Ташкент: ТГТУ, 2002. -100 с.
- 2. Ким Ф.О. Синтез, свойства и технология производства полидентатных соединений и их применение: Диссертация на соискание канд. техн. наук. Ташкент: ТХТИ, 2005, -117 с.
- 3. Терещенко В.А. Гидрохимический метод выявления солеотложений в скважинах.//Ж. Газовая промышленность. 1979. -№10. –С .18-20.
- 4. Абдумиен Р.А., Мосунов Ю.А., Арбузов В.М. Диагностика аутигенного кальцита в эксплуатационных скважинах методом радиоактивного каротажа.//Ж. Нефтегазовая геология и геофизика. 1975. -№5. -С. 42-45.