METHOD FOR PRECISE LANDING OF UNMANNED AERIAL VEHICLE

Authors

  • Gulbanbegim Muzaffar qizi Jamolova p.f.f.d (PhD), Karshi branch of Tashkent University of Information Technologies
  • Sardor Norovich Bo‘riyev assistent, Karshi branch of Tashkent University of Information Technologies
  • Akhmadjon Tursunov student Karshi branch of Tashkent University of Information Technologies

Keywords:

UAVs, Neural network-based control, Fuzzy logic, Backstepping control, Sliding mode control, Feedback linearization, INS systems, GPS

Abstract

An aircraft landing is a very challenging problem. Due to the risks involved, pilots practice touchdowns for a long time during the landing phase. Over the past ten years, research on the development of autonomous landing technologies has been vigorous. This article gives a general overview of landing procedures, covering everything from vision-based landings to GPS-based ones, and basic controls to sophisticated ones. It aims to give a comprehensive overview of the landing control problem’s current state and controller design. The comparison presented in this paper is based on factors including vehicle type, problem design assumptions, methodological approaches, and algorithm performance in real-world scenarios.

References

Лобанов Н.А. Основы расчета и конструирования парашютов. – М.: Машиностроение,1965.

Системы адаптивного управления летательными аппаратами. / А.С. Новоселов, В.Е. Болнокин, П.И. Чинаев, А.Н. Юрьев. - М. Машиностроение, 1987.

Овинов А.В. Способы взлета и посадки летательных аппаратов и взлетно-посадочная система для осуществления этих способов. Патент РФ № 2466913, 2010.

Николаев Р.П., Григорьев Д.В., Весельев А.В. и др. Способ посадки летательного аппарата. Патент РФ № 2208555, 2001.

Агеев А.М., Волобуев М.Ф., Михайленко С.Б. и др. Способ точной посадки беспилотного летательного аппарата. Патент РФ № 2539703, 2013.

A. Cesetti, E. Frontoni, A. Mancini, P. Zingaretti, and S. Longhi, “A vision-based guidance system for uav navigation and safe landing using natural landmarks,” in Selected papers from the 2nd International Symposium on UAVs, Reno, Nevada, USA June 8–10, 2009. Springer, 2010, pp. 233–257.

H. Khalil, Nonlinear Systems. Prentice Hall PTR, 2002. [Online]. Available: http://books.google.co.in/books?id=t d1QgAACAAJ

B. Prasad B and S. Pradeep, “Automatic landing system design using feedback linearization method,” in AIAA Infotech@ Aerospace 2007 Conference and Exhibit.

H. Voos and B. Nourghassemi, “Nonlinear control of stabilized flight and landing for quadrotor uavs,” in 7th Workshop on Advanced Control and Diagnosis, Zielona Gora, Poland ´ , 2009.

B. T. Burchett, “Feedback linearization guidance for approach and landing of reusable launch vehicles,” in American Control Conference, 2005. Proceedings of the 2005. IEEE, 2005, pp. 2093–2097.

T. Lee and Y. Kim, “Nonlinear adaptive flight control using backstepping and neural networks controller,” Journal of Guidance, Control, and Dynamics, vol. 24, no. 4, pp. 675–682, 2001.

D. Venkateswara Rao and T. H. Go, “Automatic landing system design using sliding mode control,” Aerospace Science and Technology, vol. 32, no. 1, pp. 180–187, 2014.

S. Bouabdallah and R. Siegwart, “Backstepping and sliding-mode techniques applied to an indoor micro quadrotor,” in Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on. IEEE, 2005, pp. 2247–2252.

B. Ahmed and H. R. Pota, “Backstepping-based landing control of a ruav using tether incorporating flapping correction dynamics,” in American Control Conference, 2008. IEEE, 2008, pp. 2728–2733.

B. Ahmed, H. R. Pota, and M. Garratt, “Flight control of a rotary wing uav using backstepping,” International Journal of Robust and Nonlinear Control, vol. 20, no. 6, pp. 639–658, 2010.

S. Yoon, Y. Kim, and S. Park, “Constrained adaptive backstepping controller design for aircraft landing in wind disturbance and actuator stuck,” International Journal of Aeronautical and Space Sciences, vol. 13, no. 1, pp. 74–89, 2012.

M. Livchitz, A. Abershitz, U. Soudak, and A. Kandel, “Development of an automated fuzzy-logic-based expert system for unmanned landing,” Fuzzy Sets and Systems, vol. 93, no. 2, pp. 145–159, 1998.

K. Nho and R. K. Agarwal, “Automatic landing system design using fuzzy logic,” Journal of Guidance, Control, and Dynamics, vol. 23, no. 2, pp. 298–304, 2000.

M. A. Olivares-Mendez, I. F. Mondrag ´ on, P. Campoy, and C. Martinez, ´ “Fuzzy controller for uav-landing task using 3d-position visual estimation,” in Fuzzy Systems (FUZZ), 2010 IEEE International Conference on. Ieee, 2010, pp. 1–8.

S. Malaek, N. Sadati, H. Izadi, and M. Pakmehr, “Intelligent autolanding controller design using neural networks and fuzzy logic,” in Control Conference, 2004. 5th Asian, vol. 1. IEEE, 2004, pp. 365–373.

J.-S. Jang, “Anfis: adaptive-network-based fuzzy inference system,” Systems, Man and Cybernetics, IEEE Transactions on, vol. 23, no. 3, pp. 665–685, 1993.

T. J. Koo and S. Sastry, “Hybrid control of unmanned aerial vehicles for autonomous landing,” in Proceedings of 2nd AIAA Unmanned Unlimited, AIAA, systems, technologies, and operationsaerospace, land, and sea conference, 2003.

Downloads

Published

2023-06-16

How to Cite

Jamolova , G. M. qizi, Bo‘riyev , S. N., & Tursunov , A. (2023). METHOD FOR PRECISE LANDING OF UNMANNED AERIAL VEHICLE. Educational Research in Universal Sciences, 2(4 SPECIAL), 1159–1167. Retrieved from http://erus.uz/index.php/er/article/view/3035