BASIC LEARNING PRINCIPLES OF ARTIFICIAL NEURAL NETWORKS

Authors

  • Mavzuna Karimova Termiz State Pedagogical Institute, Faculty of Mathematics and Informatics Termiz region, Termiz, 190111, Uzbekistan

Keywords:

neural network, machine learning, recognize objects in images Introduction: What is Neural Network Technology Neural networks: their

Abstract

Neural networks have many important properties, but the main one is the ability to learn. Training a neural network is primarily about changing the strength of synaptic connections between neurons. The following example clearly shows this. In Pavlov’s classic experiment, a bell was rung before each dog was fed. The dog quickly learned to associate the ringing of the bell with food. This was due to increased synaptic connections between the parts of the brain responsible for hearing and the salivary glan A difficult and time-consuming part of the process of developing a neural network is training it. A neural network is required to "work" on tens of millions of input data sets in order for it to be able to correctly solve the given tasks. Andrey Kalinin and Grigory Bakunov associate the spread of neural networks with the emergence of various accelerated learning technologies.

References

Nuraliyeva Feruza Abdusalim qiziInternational Conference onAdvances in Education,Social and Applied SciencesLondon, U.KJuly 9th, 2022conferencezone.org179YUQORI CHASTOTALI SOHADAGI DISPERSIYALI MUHITDA TO‘LQINLAR HARAKATI

M.Karimova MODELING OF TEXT RECOGNITION IN IMAGES 2022/10/28 Journal Spectrum Journal of Innovation, Reforms and Development Volume 11 Issue Vol.8(2022) Pages 257–267

M.Karimova, D Abdullayeva.NEURAL NETWORKS AND THEIR MAIN PROPERTIES

2023/5/21 Journal Open Access Repository Volume 9 Issue 5 Pages 167-172

M.Karimova MODELING OF TEXT RECOGNITION IN IMAGES 2022/10/28 Journal Spectrum Journal of Innovation, Reforms and Development Volume 8 Pages 257-267 2022 Scholar articles M.Alimov. Информатика ва ахборот технологиялари фанини ўқитишда медиатаълимга асосланган инновацион технологиялардан фойдаланиш. «Zamonaviy dunyoda ilm-fan va texnologiya» Respublika ilmiy-amaliy konferensiyasining 2023 yil 5(12)-sonida nashr etilgan 2(6), 64–66. 13.02.2023

M.Alimov. Информатика ва ахборот технологиялари фанини ўқитишда медиатаълимга асосланган “Ўқитишнинг беш поғонали метод”идан фойдаланиш орқали ўқувчилар фаоллигини ошириш Elektron ta’lim” – “Электронное обучение” – “E-learning” September, 2022, No2, Vol. 4 ISSN2181-1199.

M.M.Alimov. “Информатика ва ахборот технологиялари фанига интеграциялашган медиатаълимни ташкил этиш” УЧЕНЫЙ XXI ВЕКА. МОСКВА Международный научный журнал ISSN 2410-3586

САТТОРОВ, С. (2023). ДАРС ЖАРАЁНИДА ЎҚУВЧИЛАР ОНГЛИ ИНТИЗОМЛИЛИГИНИ РИВОЖЛАНТИРИШНИ УСЛУБИЙ АСОСЛАРИ. Journal of Pedagogical and Psychological Studies, 1(6), 3–8. Retrieved from

Abdurazzoqov Ilhom Rustamovich. (2022). RIVOJLANGAN XORIJIY MAMLAKATLARDA INFORMATIKA VA AXBOROT TEXNOLOGIYASI FANINING O‘RNI . PEDAGOGS Jurnali, 20(1), 58–61.

Abdurazzoqov Ilhom Rustamovich. (2022). FRANSIYA VA AVSTRALIYA DAVLATLARIDA INFORMATIKA VA AXBOROT TEXNOLOGIYALARI FANINING RIVOJLANISHI, O‘QITISHDA QO‘LLANILADIGAN METODLAR . World Scientific Research Journal, 8(1), 123–126.

Downloads

Published

2023-10-24

How to Cite

Karimova, M. (2023). BASIC LEARNING PRINCIPLES OF ARTIFICIAL NEURAL NETWORKS. Educational Research in Universal Sciences, 2(12 SPECIAL), 51–56. Retrieved from http://erus.uz/index.php/er/article/view/4065