MATNNI TANIB OLISH TIZIMIDA KLETKALI AVTOMATLAR

Authors

  • Benazir Botirjon qizi Umarova NamMTI, Avtomatika va energetika fakulteti Informatsion texnologiyalar kafedrasi assistenti

Keywords:

Tanib olish, belgilar, belgilar xususiyatlari, tasvirni qayta ishlash, tasvirni oq-qora holati, matnni belgilarga bo‘lish, kletkali avtomatlar.

Abstract

Kletkali avtomatlarning afzalliklari matnni aniqlash tizimida foydali bo‘lishi mumkin. Qoidalarning soddaligi va bir xilligi bir nechta mantiqiy yoki matematik elementlarga asoslangan murakkab tizimlarni yaratish va kamroq hisoblash resurslari va xotira bilan natijalarga erishish imkonini beradi.Tadqiqot jarayonida ishlab chiqilgan g‘oyalar va algoritmlarni amalga oshirish uchun model va uning asosida dastur yaratish kerak bo‘ladi.

References

Neumann J. Theory of self-reproducing automaton. J. Neumann. M.: Mir, 1971.

Wolfram S. A New Kind of Science. Wolfram Media. Inc., 2002.

Kolesnikov S. Pattern recognition. General information /Newspaper “Computer-Inform”. Software. http://www.ci.ru/

Travin A. Technologies for optical text recognition // Electronic office. 1996. November.

Khaikin S. Neural networks: a complete course. M.: Williams, 2006.

Terekhov S. A. Lectures on the theory and applications of artificial neural networks. Laboratory of Artificial Neural Networks NTO-2. Snezhinsk. VNIITF.

OpenCV introduction – https://docs.opencv.org/3.4.1/d1/dfb/intro.html

Чабан Л. Н. Теория и алгоритмы распознавания образов. Учебное пособие. – М.: МИИГАиК, 2004, 70 с

EmguCV references – http://www.emgu.com/wiki/files/3.4.1/document/html/8dee1f02-8c8a-4e37-87f4-05e10c39f27d.htm

Ту Дж., Гонсалес Р. Принципы распознавания образов // Пер. с англ. Гуревич И. Б. – М.: «Мир», 1978

LeCun Y. et al. Gradient-based learning applied to document recognition //Proceedings of the IEEE. – 1998. – Т. 86. – №. 11. – С. 2278–2324.

McCulloch W. S., Pitts W. A logical calculus of the ideas immanent in nervous activity //The bulletin of mathematical biophysics. – 1943. – Т. 5. – №. 4. – С. 115–133.

Ojala, T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns / T. Ojala, M. Pietikainen, T. Maenpaa // IEEE Trans. Pattern Anal. Mach. Intell. – 2002. – Т. 24 – № 7. – С. 971-987.

Wolf, L. Descriptor based methods in the wild / L. Wolf, T. Hassner, Y. Taigman // Science (80.). – 2008. – Т. 6 – C. 1-14.

Ahonen, T. Face description with local binary patterns: Application to face recognition / T. Ahonen, A. Hadid, M. Pietikäinen // IEEE Trans. Pattern Anal. Mach. Intell. – 2006. – № 12 – C. 2037-2041.

O‘Connor, B. Facial Recognition using Modified Local Binary Pattern and Random Forest / B. O‘Connor, K. Roy // International Journal of Artificial Intelligence & Applications. – 2013. – Т. 4 – № 6. – С. 1-25.

Trefny, J. Extended set of local binary patterns for rapid object detection / J. Trefny, J. Matas // Proc. Comput. Vis. Winter – 2010. – С. 37-43.

Plataniotis, K.N. Color image processing and applications / K. N. Plataniotis, A. N. Venetsanopoulos – Engineering Monograph: Springer Science & Business Media. – 2000. – 65с.

Cootes, T.F. Training Models of Shape from Sets of Examples // BMVC92. – 1992. – C. 1-10.

Cootes, T. Model-based methods in analysis of biomedical images / T. Cootes // Image Process. Oxford Univ. Press. – 2000. – C. 223-247.

Abdi H., Williams L. J. Principal component analysis // Wiley Interdisciplinary Reviews: Computational Statistics. — 2010. — Т. 2, № 4. — С. 433—459.

Geurts P., Ernst D., Wehenkel L. Extremely randomized trees // Machine learning. — 2006. — Т. 63, № 1. — С. 3—42.

Downloads

Published

2023-11-17

How to Cite

Umarova , B. B. qizi. (2023). MATNNI TANIB OLISH TIZIMIDA KLETKALI AVTOMATLAR. Educational Research in Universal Sciences, 2(14 SPECIAL), 485–492. Retrieved from http://erus.uz/index.php/er/article/view/4472