PREPARATION FOR MATHEMATICS OLYMPIADS FOR UNIVERSITY STUDENTS

Authors

  • Nabikhonov Nabikhon Yokubjon ugli Student of the National University of Uzbekistan, winner of the International Olympiads

Keywords:

Cauchy-Buniakowski inequality, fixed point, idempotent matrices, Sylvester rank inequality, sequence, Darboux sum, Bolzano-Weierstrass theorem, limit point, prime number, field, invertible, pigeonhole principle, Cayley-Hamilton theorem, characteristic polynomial, eigenvalues, algebraic closure, continuous function, Euclidean plane, uncountable set, neighbourhood, injective, surjective, bijective, simple graph, planar graph, subgraph, Kuratowski’s Theorem, Euler’s formula, metric space.

Abstract

This article presents a sample mock exam to prepare for Mathematical Olympiads. It presents complex problems and their solutions from fields such as algebra, mathematical analysis, topology, combinatorics, number theory. Necessary for solving given problems, important theorems and affirmations are given. Modern and unusual methods for solving mathematical problems are described. For each problem, a marking scheme is also given that complies with the requirements of International Mathematical Olympiads.

References

Ravzan Gelsa, Titu Andreescu, Putnam and Beyond, Springer Science+Business Media, LLC, 2007.

И. Ю. Попов, Задачи повышенной трудности в курсе высшей математике, Санкт-Петербург, 2008.

Munkers, James R. Topology/ James Raymond Munkers -2nd edition. Massachusetts Institute of Technology, 2000.

Aditya Khurmi, Modern Olympiad Number Theory, 2020.

K. H. Rosen, Elementary Number Theory and Its Applications, fifth edition, 95 Pearson, Addison-Wesley, Boston et al., 2005.

A. G. Hamilton, Logic for Mathematicians, Cambridge University Press, Cam97 bridge, 1980.

Pham King Hung, Secret in Inequalities, Gil Publishing House, 2007.

D. S. Malik (Creighton University), John N. Mordeson (Creighton University), M.K. Sen (Calcutta University), Introduction to Abstract Algebra, 2007.

A. Engel, Problem-Solving Strategies, Springer, New York, 1998.

Titu Andreescu, Essential Linear Algebra with Applications, A Problem-Solving Approach, Springer Science+Business Media New York 2014.

Pablo Soberon, Problem-Solving Methods in Combinatorics, An Approach to Olympiad Problems, Springer Basel 2013.

Sh.A.Ayupov, B.A.Omirov, A.X.Xudoyberdiyev, F.H.Haydarov, ALGEBRA VA SONLAR NAZARIYASI, Toshkent «Tafakkur-bo‘stoni» 2019.

G. Xudayberganov, A.K. Vorisov, X.T. Mansurov, B.A. Shoimqulov. Matematik analizdan ma’ruzalar I. “Voris-nashriyot” Toshkent-2010.

www.aops.com internet sayti.

https://www.imc-math.uk/ internet sayti.

https://mathdep.itmo.ru/ncumc/ internet sayti.

https://icmathscomp.org/ internet sayti.

https://math.stackexchange.com/ internet sayti.

http://www.imo-official.org/ internet sayti.

Downloads

Published

2024-07-16

How to Cite

Nabikhonov Nabikhon Yokubjon ugli. (2024). PREPARATION FOR MATHEMATICS OLYMPIADS FOR UNIVERSITY STUDENTS. Educational Research in Universal Sciences, 3(7), 16–28. Retrieved from http://erus.uz/index.php/er/article/view/6386