ELEKTRON TA’LIM TIZIMIDA TALABA BILIMINI BAHOLASH UCHUN KLASTERLASH ALGORITMI: K YAQIN QO‘SHNI (KNN) ALGORITMIDAN FOYDALANISH.
Keywords:
Klasterlash, Evklid algoritmi, Xemming algoritmi, nominal attribut, numerik attribut.Abstract
Bugungi IT sohasi rivojlanib borayotgan davrda elektron ta’lim hamda unda talabalar bilimini baholash masalasi davr talabi sanaladi. Talaba bilimini baholashda ma’lumotlarni intellektli tahlil qilish ham dolzarb masaladir. Intellektli tahlil jarayon algoritmlari, ma’lumotlar ham holisona baholashga xizmat ko‘rsatmog‘i kerak. Ushbu maqolada talaba bilimini baholashda muhim o‘rin tutadigan barcha attributlar va ularning qiymatlari e’tiborga olindi. Tuzilgan data set yordamida K yaqin qo‘shni algoritmi asosida hisoblashlar amalga oshirildi. Talaba bilimini baholashda ushbu algoritmning afzallik hamda kamchilik jihatlari keltirib o‘tildi.
References
D. Al-Fraihat, M. Joy, R. Masa’deh, and J. Sinclair, “Evaluating E-learning systems success: An empirical study,” Comput Human Behav, vol. 102, 2020, doi: 10.1016/j.chb.2019.08.004.
X. Wang, P. Wu, G. Liu, Q. Huang, X. Hu, and H. Xu, “Learning performance prediction via convolutional GRU and explainable neural networks in e-learning environments,” Computing, vol. 101, no. 6, 2019, doi: 10.1007/s00607-018-00699-9.
M. A. Almaiah, A. Al-Khasawneh, and A. Althunibat, “Exploring the critical challenges and factors influencing the E-learning system usage during COVID-19 pandemic,” Educ Inf Technol (Dordr), vol. 25, no. 6, 2020, doi: 10.1007/s10639-020-10219-y.
S. Alyahya and A. Aldausari, “An electronic collaborative learning environment for standardized tests,” Electronic Journal of e-Learning, vol. 19, no. 3, 2021, doi: 10.34190/ejel.19.3.2167.
H. A. El-Sabagh, “Adaptive e-learning environment based on learning styles and its impact on development students’ engagement,” International Journal of Educational Technology in Higher Education, vol. 18, no. 1, 2021, doi: 10.1186/s41239-021-00289-4.
A. M. Maatuk, E. K. Elberkawi, S. Aljawarneh, H. Rashaideh, and H. Alharbi, “The COVID-19 pandemic and E-learning: challenges and opportunities from the perspective of students and instructors,” J Comput High Educ, vol. 34, no. 1, 2022, doi: 10.1007/s12528-021-09274-2.
X. Wu, X. Zhu, G. Q. Wu, and W. Ding, “Data mining with big data,” IEEE Trans Knowl Data Eng, vol. 26, no. 1, 2014, doi: 10.1109/TKDE.2013.109.
N. Shah and K. Shah, “Introduction to Data Mining,” in Practical Data Mining Techniques and Applications, 2023. doi: 10.1201/9781003390220-1.
A. Abu, “Educational Data Mining & Students’ Performance Prediction,” International Journal of Advanced Computer Science and Applications, vol. 7, no. 5, 2016, doi: 10.14569/ijacsa.2016.070531.
N. Sowmiya, E. B. Anitha, and M. Somu, “Student Performance Prediction via Online Learning Analytics using Exam Metrics,” … Journal of Research in …, vol. 1, no. 43, 2021.
J. Nurjamal, J. Qizi, and M. Al-Xorazmiy, “SUN’IY INTELLEKTNING AMALIY SOHALARDA QO‘LLANISHI.”
A. Dirin and C. A. Saballe, “Machine Learning Models to Predict Students’ Study Path Selection,” International Journal of Interactive Mobile Technologies, vol. 16, no. 1, 2022, doi: 10.3991/IJIM.V16I01.20121.
S. Raschka, J. Patterson, and C. Nolet, “Machine learning in python: Main developments and technology trends in data science, machine learning, and artificial intelligence,” Information (Switzerland), vol. 11, no. 4. 2020. doi: 10.3390/info11040193.
A. W. Syaputri, E. Irwandi, and M. Mustakim, “Naïve Bayes Algorithm for Classification of Student Major’s Specialization,” Journal of Intelligent Computing & Health Informatics, vol. 1, no. 1, 2020, doi: 10.26714/jichi.v1i1.5570.
R. A. Rustia, M. M. A. Cruz, M. A. P. Burac, and T. D. Palaoag, “Predicting student’s board examination performance using classification algorithms,” in ACM International Conference Proceeding Series, 2018. doi: 10.1145/3185089.3185101.
K. Sunday, P. Ocheja, S. Hussain, S. S. Oyelere, O. S. Balogun, and F. J. Agbo, “Analyzing student performance in programming education using classification techniques,” International Journal of Emerging Technologies in Learning, vol. 15, no. 2, 2020, doi: 10.3991/ijet.v15i02.11527.
M. Batta, “Machine Learning Algorithms - A Review,” International Journal of Science and Research (IJSR), vol. 18, no. 8, 2018.